BIOMOLECULES

Monosaccharides

Single sugar units which can not be hydrolysed

- Fructose Fruit sugar (sweetest natural Sugar)
- Glucose "Sugar of body" Blood sugar).

Acidic Hydrolysis of sucrose in alcoholic solution gives glucose and fructose

Determination of Structure of Glucose

Reagent used	Observation	End Product
н	6 Carbon in Straight Chain	n-hexane
NH₂OH/HCN	Presence of Carbonyl group	Glucoxme/ Cyanohydrin
Br₂/H2O	Presence of Aldehydic group	Gluconic acid
Acetic Anhydride	Presence of 5 -OH groups	Glucose pentacetate
Nitric acid	Presence of 1° Alcoholic group	Saccharic acid

On reaction with NaBH4, Sorbitol is obtained

81

D & L nomenclature in carbohydrates

- Glucose is Aldohexose, Fructose is Ketohexose.
- Anomers: α-D-Glucose and β-D-Glucose differ in position of OH at C1.
- Epimers : α-D-Glucose & α-D-Galactose differ in position of OH at C4. (C4 epimers)

Disachharides

Yields two molecules of sugar on hydrolysis

Name	Linkage	
Sucrose	C1 of α-D-Glucose and C2 of β-D-Fructose	
Maltose	C1 of α -D-Glucose and C4 of α -D-Glucose	
Lactose	C1 of β-D-Galactose and C4 of β-D-Glucose	

- Sucrose is a non reducing sugar not giving positive test for Tollens and Fehlings. (All others give +ve test)
- Hydrolysis of sucrose changes sign of rotation from dextro (+) to laevo (-) owing to Invert sugar behaviour
- Lactose is also called milk sugar

82

Polysachharides

Large no. of monosaccharides joined together

- Starch is storage house of plants
 - Amylose Water soluble constitutes 15-20% of starch Unbranched chain of α-D(+)-Glucose units held together with C1-C4 linkage
 - Amylopectin Water insoluble constitutes 80-85% of starch - Branched chain of α-D(+)-Glucose units - held together with C1-C6 linkage
- Cellulose is constituent of cell wall in plant cells.
 - Straight chain of β-D-Glucose (C1-C4 Linkage)
- Glycogen (Carbohydrates are stored in human body)
 - Similar to amylopectin

Amino acids

Essential Amino acids

Valine, Leucine, Isoleucine, arginine, Lysine, Threonine, Methionine, Phenylalanine, Tryptophan, Histidine

Non Essential A-A

Glycine, Alanine, Glutamic acid, Aspartic acid, Glutamine, As Paragine, Serine, Cysteine, Tyrosine, Proline

- Zwitter ion is neutral despite having charges.
- Shows amphoteric behaviour (acidic/basic)
- Only Glycine is optically inactive amino acid

Proteins

Polymers of amino acids joined with peptide linkage

Fibrous Proteins	Globular Proteins	
long and narrow shape	rounded shape	
mostly insoluble in water	Soluble in water	
Hydrogen and disulphied bonds	Hydrogen bonding	
e.g. Keratin, Myosin	e.g. Albumin, insulin	

Peptide Linkage between -COOH and -NH₂

Denaturation of Proteins

- Temperature and pH both have a significant impact
- Hydrogen bonding disturbed (Globules unfolds and helix uncoils)
- Protein loses biological activity.
- During Denaturation, only 1° structure remains intact.
- e.g.
 - Coagulation of egg whites
 - Curdling of milk

84

Lactose is also called milk sugar

Vitamins and their definciency			
Vitamin	Definciency disease	Solubility	
Α	Xeropthalmia	Fat Soluble	
B1 (Thiamine)	Beri-Beri	Water Soluble	
B2 (Riboflavin)	Cheilosis	Water Soluble	
B6 (Pyridoxine)	Convulsions	Water Soluble	
B12	Pernicious anaemia	Water Soluble	
C (Ascorbic acid)	Scurvy	Water Soluble	
D	Rickets, osteomalacia	Fat Soluble	
E	Muscular Weakness	Fat Soluble	
К	Blood clotting time ↑	Fat Soluble	

Important Points about Nucleic acids

- Total 5 bases : Adenine (A), Guanine (G), Cytosine (C),
 Thymine (T), Uracil (U).
- Nucleoside : Base + Sugar (1' position)
- Nucleotide: Base + Sugar (1') + Phosphate (5')
- Nucleotides are joined together by phospho-diester linkage between 5' and 3' of sugar moiety

	DNA	RNA
Bases	A,G,C,T	A,G,C,U
Sugar	β-2-deoxyribose	β-D-ribose
Strand	Double stranded	Single Stranded
Stability	It is stable	Unstable
Chargaff's rule	Obeys	Doesn't obey
Sensitivity	UV Sensitive	UV Resistant

